Department Ot Economics Working Paper Series Inference on Quantile Regression Process, an Alternative Inference on Quantile Regression Process, an Alternative Inference on Quantile Regression Process, an Alternative
نویسنده
چکیده
A very simple and practical resampling test is offered as an alternative to inference based on Kmaladzation, as developed in in Koenker and Xiao (2002a). This alternative has competitive or better power, accurate size, and does not require estimation of non-parametric sparsity and score functions. It applies not only to iid but also time series data. Computational experiments and an empirical example that re-examines the effect of re-employment bonus on the unemployment duration support this approach.
منابع مشابه
Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood
The paper discusses the asymptotic validity of posterior inference of pseudo-Bayesian quantile regression methods with complete or censored data when an asymmetric Laplace likelihood is used. The asymmetric Laplace likelihood has a special place in the Bayesian quantile regression framework because the usual quantile regression estimator can be derived as the maximum likelihood estimator under ...
متن کاملInference on the Instrumental Quantile Regression Process for Structural and Treatment Effect Models
We introduce a class of instrumental quantile regression methods for heterogeneous treatment effect models and simultaneous equations models with nonadditive errors and offer computable methods for estimation and inference. These methods can be used to evaluate the impact of endogenous variables or treatments on the entire distribution of outcomes. We describe an estimator of the instrumental v...
متن کاملCluster-robust Bootstrap Inference in Quantile Regression Models
In this paper I develop a wild bootstrap procedure for cluster-robust inference in linear quantile regression models. I show that the bootstrap leads to asymptotically valid inference on the entire quantile regression process in a setting with a large number of small, heterogeneous clusters and provides consistent estimates of the asymptotic covariance function of that process. The proposed boo...
متن کاملQuantile Cointegrating Regression
Quantile regression has important applications in risk management, portfolio optimization, and asset pricing. The current paper studies estimation, inference and nancial applications of quantile regression with cointegrated time series. In addition, a new cointegration model with varying coe¢ cients is proposed. In the proposed model, the value of cointegrating coe¢ cients may be a¤ected by th...
متن کاملConditional Quantile Processes Based on Series or Many Regressors
Quantile regression (QR) is a principal regression method for analyzing the impact of covariates on outcomes. The impact is described by the conditional quantile function and its functionals. In this paper we develop the nonparametric QR series framework, covering many regressors as a special case, for performing inference on the entire conditional quantile function and its linear functionals. ...
متن کامل